3.898 \(\int \frac{1}{x^5 (1-x^4)^{3/2}} \, dx\)

Optimal. Leaf size=50 \[ -\frac{1}{4 x^4 \sqrt{1-x^4}}+\frac{3}{4 \sqrt{1-x^4}}-\frac{3}{4} \tanh ^{-1}\left (\sqrt{1-x^4}\right ) \]

[Out]

3/(4*Sqrt[1 - x^4]) - 1/(4*x^4*Sqrt[1 - x^4]) - (3*ArcTanh[Sqrt[1 - x^4]])/4

________________________________________________________________________________________

Rubi [A]  time = 0.0222809, antiderivative size = 53, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 51, 63, 206} \[ -\frac{3 \sqrt{1-x^4}}{4 x^4}+\frac{1}{2 x^4 \sqrt{1-x^4}}-\frac{3}{4} \tanh ^{-1}\left (\sqrt{1-x^4}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(x^5*(1 - x^4)^(3/2)),x]

[Out]

1/(2*x^4*Sqrt[1 - x^4]) - (3*Sqrt[1 - x^4])/(4*x^4) - (3*ArcTanh[Sqrt[1 - x^4]])/4

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^5 \left (1-x^4\right )^{3/2}} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{(1-x)^{3/2} x^2} \, dx,x,x^4\right )\\ &=\frac{1}{2 x^4 \sqrt{1-x^4}}+\frac{3}{4} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} x^2} \, dx,x,x^4\right )\\ &=\frac{1}{2 x^4 \sqrt{1-x^4}}-\frac{3 \sqrt{1-x^4}}{4 x^4}+\frac{3}{8} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} x} \, dx,x,x^4\right )\\ &=\frac{1}{2 x^4 \sqrt{1-x^4}}-\frac{3 \sqrt{1-x^4}}{4 x^4}-\frac{3}{4} \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{1-x^4}\right )\\ &=\frac{1}{2 x^4 \sqrt{1-x^4}}-\frac{3 \sqrt{1-x^4}}{4 x^4}-\frac{3}{4} \tanh ^{-1}\left (\sqrt{1-x^4}\right )\\ \end{align*}

Mathematica [C]  time = 0.0052701, size = 30, normalized size = 0.6 \[ \frac{\, _2F_1\left (-\frac{1}{2},2;\frac{1}{2};1-x^4\right )}{2 \sqrt{1-x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*(1 - x^4)^(3/2)),x]

[Out]

Hypergeometric2F1[-1/2, 2, 1/2, 1 - x^4]/(2*Sqrt[1 - x^4])

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 82, normalized size = 1.6 \begin{align*} -{\frac{3}{4}{\it Artanh} \left ({\frac{1}{\sqrt{-{x}^{4}+1}}} \right ) }+{\frac{1}{4\,{x}^{2}+4}\sqrt{- \left ({x}^{2}+1 \right ) ^{2}+2+2\,{x}^{2}}}-{\frac{1}{4\,{x}^{2}-4}\sqrt{- \left ({x}^{2}-1 \right ) ^{2}+2-2\,{x}^{2}}}-{\frac{1}{4\,{x}^{4}}\sqrt{-{x}^{4}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(-x^4+1)^(3/2),x)

[Out]

-3/4*arctanh(1/(-x^4+1)^(1/2))+1/4/(x^2+1)*(-(x^2+1)^2+2+2*x^2)^(1/2)-1/4/(x^2-1)*(-(x^2-1)^2+2-2*x^2)^(1/2)-1
/4*(-x^4+1)^(1/2)/x^4

________________________________________________________________________________________

Maxima [A]  time = 0.98178, size = 82, normalized size = 1.64 \begin{align*} -\frac{3 \, x^{4} - 1}{4 \,{\left ({\left (-x^{4} + 1\right )}^{\frac{3}{2}} - \sqrt{-x^{4} + 1}\right )}} - \frac{3}{8} \, \log \left (\sqrt{-x^{4} + 1} + 1\right ) + \frac{3}{8} \, \log \left (\sqrt{-x^{4} + 1} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+1)^(3/2),x, algorithm="maxima")

[Out]

-1/4*(3*x^4 - 1)/((-x^4 + 1)^(3/2) - sqrt(-x^4 + 1)) - 3/8*log(sqrt(-x^4 + 1) + 1) + 3/8*log(sqrt(-x^4 + 1) -
1)

________________________________________________________________________________________

Fricas [B]  time = 1.48874, size = 174, normalized size = 3.48 \begin{align*} -\frac{3 \,{\left (x^{8} - x^{4}\right )} \log \left (\sqrt{-x^{4} + 1} + 1\right ) - 3 \,{\left (x^{8} - x^{4}\right )} \log \left (\sqrt{-x^{4} + 1} - 1\right ) + 2 \,{\left (3 \, x^{4} - 1\right )} \sqrt{-x^{4} + 1}}{8 \,{\left (x^{8} - x^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+1)^(3/2),x, algorithm="fricas")

[Out]

-1/8*(3*(x^8 - x^4)*log(sqrt(-x^4 + 1) + 1) - 3*(x^8 - x^4)*log(sqrt(-x^4 + 1) - 1) + 2*(3*x^4 - 1)*sqrt(-x^4
+ 1))/(x^8 - x^4)

________________________________________________________________________________________

Sympy [A]  time = 2.67922, size = 95, normalized size = 1.9 \begin{align*} \begin{cases} - \frac{3 \operatorname{acosh}{\left (\frac{1}{x^{2}} \right )}}{4} + \frac{3}{4 x^{2} \sqrt{-1 + \frac{1}{x^{4}}}} - \frac{1}{4 x^{6} \sqrt{-1 + \frac{1}{x^{4}}}} & \text{for}\: \frac{1}{\left |{x^{4}}\right |} > 1 \\\frac{3 i \operatorname{asin}{\left (\frac{1}{x^{2}} \right )}}{4} - \frac{3 i}{4 x^{2} \sqrt{1 - \frac{1}{x^{4}}}} + \frac{i}{4 x^{6} \sqrt{1 - \frac{1}{x^{4}}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(-x**4+1)**(3/2),x)

[Out]

Piecewise((-3*acosh(x**(-2))/4 + 3/(4*x**2*sqrt(-1 + x**(-4))) - 1/(4*x**6*sqrt(-1 + x**(-4))), 1/Abs(x**4) >
1), (3*I*asin(x**(-2))/4 - 3*I/(4*x**2*sqrt(1 - 1/x**4)) + I/(4*x**6*sqrt(1 - 1/x**4)), True))

________________________________________________________________________________________

Giac [A]  time = 1.15365, size = 85, normalized size = 1.7 \begin{align*} -\frac{3 \, x^{4} - 1}{4 \,{\left ({\left (-x^{4} + 1\right )}^{\frac{3}{2}} - \sqrt{-x^{4} + 1}\right )}} - \frac{3}{8} \, \log \left (\sqrt{-x^{4} + 1} + 1\right ) + \frac{3}{8} \, \log \left (-\sqrt{-x^{4} + 1} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+1)^(3/2),x, algorithm="giac")

[Out]

-1/4*(3*x^4 - 1)/((-x^4 + 1)^(3/2) - sqrt(-x^4 + 1)) - 3/8*log(sqrt(-x^4 + 1) + 1) + 3/8*log(-sqrt(-x^4 + 1) +
 1)